Course Schedule of MST Program Semester: Spring, 2009

Course: Advanced Physical Chemistry (II)- 高等物化二 Time: T2T3T4 Tuesday(週二 9:10~12:00) or Monday(15:00~17:50) Room: 311 IAM Required, credit: 3 Course No.: TIGP727200

Date	lecturer	Date	lecturer
2/24 Tuesday 9:10~12:00	Prof. Sheng-Hsien Lin	4/20 Monday15:00~17:50	Prof. Keh-Ning Huang
3/3 Tuesday 9:10~12:00	Prof. Sheng-Hsien Lin	4/27 Monday15:00~17:50	Prof. Keh-Ning Huang
3/10 Tuesday 9:10~12:00	Prof. Sheng-Hsien Lin	5/4 Monday15:00~17:50	Prof. Keh-Ning Huang
3/17 Tuesday 9:10~12:00	Prof. Sheng-Hsien Lin	5/11 Monday15:00~17:50	Prof. Keh-Ning Huang
3/24 Tuesday 9:10~12:00	Prof. Sheng-Hsien Lin	5/18 Monday15:00~17:50	Prof. Keh-Ning Huang
3/31 Tuesday 9:10~12:00	Prof. Sheng-Hsien Lin	5/25 Monday15:00~17:50	Prof. Keh-Ning Huang
4/7 Tuesday 9:10~12:00	Prof. Sheng-Hsien Lin	6/1 Monday15:00~17:50	Prof. Keh-Ning Huang
4/14 Tuesday 9:10~12:00	Prof. Sheng-Hsien Lin	6/8 Monday15:00~17:50	Prof. Keh-Ning Huang

Speaker	Part 1 (Week 1-week 8) Prof. Sheng-Hsien Lin 林取堅教授		
Class Outline	 First Law of Thermodynamics and Heat of Reactions Ideal Gases and Real Gases Second Law and Third Law of Thermodynamics Real Solutions, Phase Transitions and Phase Diagrams Chemical Equilibrium 		
Introduction	Three laws of thermodynamics will be discussed, which will be followed by showing their applications to treat properties of gases,liquids and solids, and chemical reactions. Thermodynamics of ideal solutions and real solutions will be presented.		
Grading	Homeworks Quizzes Examinations		
Textbook	 "Introduction to Statistical Thermodynamics", T. L. Hill, Dover Publication 		

	Part 2 (Week 9-week 16)		
Speaker	Prof. Keh-Ning Huang		
	黄克寧教授		
Class Outline	 P. 元 学 秋衣 Review of classical mechanics Review of quantum mechanics Introduction to quantum statistical mechanics a. Mathematical models of macroscopic and microscopic states b. Entropy c. Statistical ensembles Density matrix and transition matrix 		
Textbook	Lecture Notes		